Насосные станции Адмирал

Высота всасывания насосов и явление кавитации

Жидкость по всасывающему трубопроводу к рабочему колесу насоса подводится под действием разности давления в приемном резервуаре и абсолютного давления в потоке у входа в колесо. Последнее зависит от расположения насоса относительно уровня поверхности жидкости в резервуаре и режима работы насоса. На практике встречаются три основные схемы установки центробежных насосов:  

  1. ось насоса выше уровня жидкости в приемном резервуаре (камере) - рис. 2.9, а; 
  2. ось насоса ниже уровня жидкости в приемном резервуаре (см. рис. 2.9, б) ; 
  3. жидкость в приемном резервуаре находится под избыточным давлением (см. рис. 2.9,6).

Из уравнения Бернулли для двух сечений (в нашем случае для уровня жидкости в приемном резервуаре 0 — 0 и сечения 1 — 1 на входе в насос (см. рис. 2.8) )следует


 

где hп.в. — потери во всасывающем трубопроводе; рa — атмосферное давление, Па; рв — абсолютное давление на входе в насос, Па; св — скорость на входе в насос, м/с.

Левая часть уравнения (2.26) представляет собой вакуумметрическую высоту всасывания насоса и измеряется в метрах столба перекачиваемой жидкости.

Рис. 2.9. Схемы установки центробежных насосов

Из выражений (2.26) и (2.27) следует:

Если вода в насос поступает с подпором (см. рис. 2.9,б), то

Отрицательное значение Hв указывает на работу насоса с подпором. При работе насоса по схеме, показанной на рис. 2.9, в, выражение вакуумметрической высоты всасывания приобретает вид:

где P — абсолютное давление среды над свободной поверхностью жидкости, Па.

В зависимости от конструкции лопастного насоса геометрическую высоту всасывания отсчитывают по-разному. Для горизонтальных насосов Hг.в — это разность отметок оси насоса и уровня жидкости в приемном резервуаре. Для насосов с вертикальным валом Нг.в отсчитывается от середины входных кромок лопастей рабочего колеса (в многоступенчатых насосах колеса первой ступени) до свободной поверхности жидкости в приемном резервуаре (камере, скважине).
Нормальная работа центробежного насоса обеспечивается в таком режиме, когда абсолютное давление во всех точках его внутренней полости больше давления насыщенных паров перекачиваемой жидкости при данной температуре. Если такое условие не соблюдается, то начинаются явления парообразования и кавитации, которые приводят к уменьшению или даже прекращению подачи насоса (насос «срывает»).
Кавитацией называют процессы нарушения сплошности потока жидкости, происходящие там, где местное давление понижается и Достигает определенного критического значения. При этом наблюдается образование большого количества мельчайших пузырьков, наполненных парами жидкости и газами, выделившимися из нее. Образование пузырьков внешне похоже на кипение жидкости. Возникшие в результате понижения давления пузырьки увеличиваются в размере и уносятся потоком. При этом наблюдается местное повышение скорости движения жидкости вследствие стеснения поперечного сечения потока выделившимися пузырьками пара или газа.
Попадая в область с давлением выше критического, пузырьки разрушаются, при этом их разрушение происходит с большой скоростью и поэтому сопровождается местным гидравлическим ударом в данной микроскопической зоне. Так как конденсация занимает некоторую область и протекает непрерывно в течение длительного времени, это явление приводит к разрушениям значительных площадей поверхности рабочих колес или направляющих аппаратов. Практически появление кавитации при работе насоса можно обнаружить по характерному потрескиванию в области всасывания, шуму и вибрации насоса. Кавитация сопровождается также химическим разрушением (коррозией) материала насоса под действием кислорода и других газов, выделившихся из жидкости в области пониженного давления.
При одновременном действии коррозии и циклических механических воздействий прочность металлических деталей насоса быстро снижается. При этом воздействие кавитации на металлические детали насоса усиливается, если перекачиваемая жидкость содержит взвешенные абразивные вещества: песок, мелкие частицы шлака и т. п. Под действием кавитации поверхности деталей становятся шероховатыми, губчатыми, что способствует быстрому их истиранию взвешенными веществами. В свою очередь эти вещества, истирая поверхности деталей насоса, способствуют усилению кавитации.
Кавитационному разрушению наиболее подвержены чугун и углеродистая сталь. Более устойчивы в этом отношении бронза и нержавеющие стали. В целях повышениях устойчивости деталей насосов применяют защитные покрытия. Для этого поверхности деталей наплавляют твердыми сплавами, используют местную поверхностную закалку и другие способы защиты. Однако основной мерой борьбы с преждевременным износом проточной части насосов является предупреждение кавитационных режимов их работы.

Для бескавитационной работы насоса необходимо обеспечить условия, при которых давление на входе в насос рв было бы больше критического, т. е. больше давления насыщенных паров перекачиваемой жидкости р„. Для предотвращения явления кавитации необходимо, чтобы удельная энергия потока (отнесенная к оси рабочего колеса насоса) была достаточной для обеспечения скоростей и ускорений в потоке при входе в насос и преодоления гидравлических сопротивлений без падения местного давления до значений, ведущих к образованию кавитации.

Кавитационный запас, т. е. превышение удельной энергии потока энергии, соответствующей давлению насыщенных паров перекачиваемой жидкости, равен:


 

где h — абсолютное давление на входе в насос.

Величина h зависит от типа и конструкции насоса. Для каждого насоса экспериментально устанавливается минимальное значение кавитационного запаса hмин. Но в технической характеристике насоса указывается значение допустимого кавитационного запаса, т. е. такого кавитационного запаса, который надежно обеспечивает работу насоса без изменений его основных технических показателей. Допустимый кавитационный запас hдоп=Kдh. Коэффициент запаса Кд в зависимости от конструкции, типа и назначения насоса принимают в пределах 1,1 — 1,5.
Стандартом ИСО 2548 введено несколько иное понятие кавитационного запаса. В этом документе введен термин «суммарный напор всасывания при нагнетании» (т. е. при работе насоса). Этот термин обозначается (NPSH). Математически (NPSH) выражается так:

 

где Z1 — расстояние от плоскости входа до оси рабочего колеса; рв-—избыточное давление на входе в насос.

На входе в насос давление рв, как правило, является отрицательной величиной. Сравнивая выражение (NPSH) с формулой, описывающей кавитационный запас, легко убедиться, что оно отличается только наличием члена Z1, который учитывает разность геометрических высот центра тяжести входного патрубка насоса и рабочего колеса. Для больших насосов эта величина может быть существенной.
Из соотношений (2.27) и (2.31) следует, что допустимая вакуумметрическая высота всасывания

или

где па — напор, соответствующий атмосферному давлению (приведенная высота атмосферного давления), метры столба перекачиваемой жидкости; hн.п — напор, соответствующий давлению насыщенных паров перекачиваемой жидкости (приведенная высота давления насыщенных паров жидкости), метры столба жидкости.

Допустимая геометрическая высота всасывания вычисляется из соотношений (2.26) и (2.32)

или

Таким образом, допустимая геометрическая высота всасывания насосной установки равна допустимой вакуумной высоте всасывания насоса минус потери напора во всасывающем трубопроводе. В технической документации на насосы (каталогах, паспортах и пр.) указывается допустимая высота всасывания (или допустимый кавитационный запас) для нормальных условий, т. е. для атмосферного давления 0,1 МПа (что приблизительно соответствует 760 мм рт. ст.) и температуры перекачиваемой жидкости 20°С.

Для воды и сточной жидкости допустимая высота всасывания применительно к реальным условиям эксплуатации насоса вычисляется по соотношению

а допустимая геометрическая высота всасывания — по формуле

или

где Нв.доп. —номинальная допустимая высота всасывания (по каталогу); pа/pg — приведенная высота атмосферного давления, м вод. ст.; 0,24 —• значение Hп.п для воды при t=20С.
Значения приведенной высоты атмосферного давления pа/pg в зависимости от расположения местности над уровнем моря указаны ниже:

Высота над
уровнем моря, м
-600 100 200 300 400 500 600 700 800 100 1500 2000
pа/pg, м вод.ст.  11.3 10.3 10.2 10.1 10 9.8 9.7 9.6 9.5 9.4 9.2 8.6 8.4

 Значения высоты давления насыщенных водяных паров hн.п в зависимости от температуры воды приведены ниже:

 

Температура, °С 5 10 20 30 40 50 60 70 80 90 100
hн.п м водного ст. 0.09 0.12 0.24 0.43 0.75 1.25 2.02 3.17 4.82 7.14 10.33

Потери напора во всасывающем трубопроводе складываются из потерь на трение при движении жидкости по трубе и потерь на местные сопротивления

где i — потери напора на 1 м длины трубы; l — длина трубопровода; E£ — сумма коэффициентов местных сопротивлений; с — скорость движения при входе в фасонную часть (арматуру), м/с.